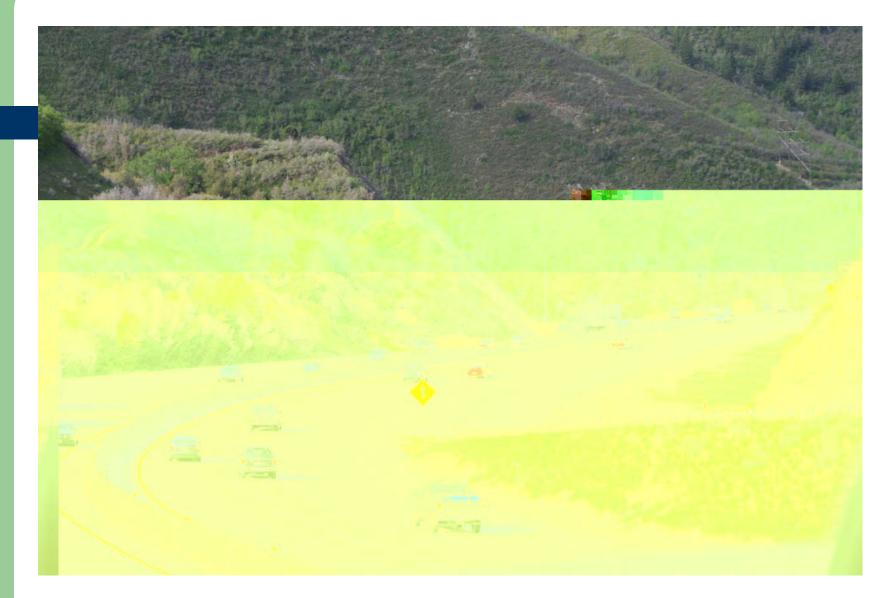
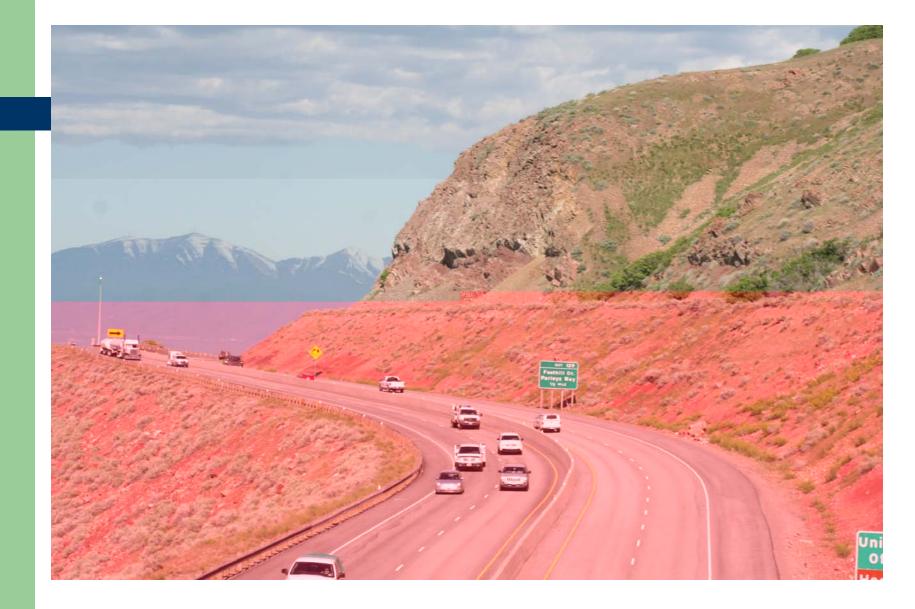
FDR in Utah

Timothy D. Biel Engineer for Materials Utah Department of Transportation

Outline

- History
 - Success
 - Failures
- Present Times
 - FDR Program
 - Specification
 - Selecting Projects


Recycling History


- 3 or 4 FDR projects (depending on definition)
 - SR 21: 23 Years ago
- 2% Portland Cement Slurry
 - Recipe/Expected 250 psi @ 7 days
- CIPR for 20+
- Several HIPR projects

Successful History

- Flagship Project?
- Canyon Climb 3000' in 10 miles
- 2 degree curves
- I-80, Connecting Salt Lake City and Park City

Pavement Condition

- Much of Superelevation either gone or in reverse
- Significant structural failures in truck lanes
- Lots of asphalt surfacing
- Minimal base, in poor condition

Design Parameters

- 20 year design period
- Replace Asphalt Surface
 - (Marshall to SuperPave)
 - PG 70-28
- Design Traffic
 - 50,000 AADT
 - 8+% Trucks (slow moving)

- Profile Milling (wire guide)
- 8" (+1") of 2% Portland Cement treated material (varied from 0% to 100%) existing base, rest was existing HMA
- Capped with 7" of SuperPave
- 1" OGSC

Project Notes

- Cement Treated Layer done in two steps
 - Original pulverization and grading
 - Addition of Portland Cement and compaction
- Had 30 minutes to get treated materials to grade
 - Original pulverization had to be within 1" of final grade before adding cement
- 1" fluff in materials after final compaction

Concept Comments

- Happened because of Industry involvement
- Was cost effective
 - \$500k out of \$8M
- Had little trouble, even with grades and superelevations.

Not so Successful History

I-80 HIPR

- I-80 MP 20 to 30
- 2" HIPR in 1992
- Microsurfacing over the top in 1993
- HIPR layer stripped severly, leading to significant ruts

SR-36, North of Tooele

- 8 mile stretch of 5 lane arterial
- New construction on A-6/A-7 materials
- Intent, with encouragement from industry, was to treat the existing subgrade and base and pave over
- NO SUBCONTRACTORS BID ON PROJECT
- \$1,000,000 change order for fabric and base

Why did we stop?

- Normal cautiousness
- Constant change in Pavement Design Engineers
 - Learning curve
- No real Industry push
- Base aggregates were cheap

Present Times

UDOT FDR Program

- Costs for materials increasing
- Trend towards recycling
- Good success on CIPR projects
- Industry involvement (SEM Materials)

Recent Projects (not ours)

- Two LG Projects in St. George
 8" of FDR plus 2" HMA cap
- Monticello Airport (wet grade)

Design Process/Thoughts

- Little or no base present
- Varying depths and layer of surfacing
- Typical savings in the areas of \$500k in \$3 to \$5 M (10+%)
- Intended to last the life of the road
 - Could be perpetual
- $a_i = 0.16$ to 0.28
 - Mr = 120 ksi to 150 ksi

General Outline:

- Pulverize the existing in-place material
- Moisture condition pulverized material
- Mix with emulsion
- Place to line, grade and compact

Acceptance Criteria:

- Gradation (2" minus on pulverized material)
- Quality of emulsion
- Compaction (97% of daily curve)
- No mix verification yet
 - Working on Resilient Modulus Testing
 - SEM's business based on success

Mix Des	ign:
---------	------

Performed by Contractor/Supplier

	Coarse	Fine
Short-term strength test, 1 hour	80 min.	75 min.
Indirect tensile strength (ITS)	40 min.	35 min.
Conditioned ITS	25 min.	20 min.
Resilient modulus	150 min.	120 min.
Thermal cracking (IDT)	See note in appendix	

Contractor QC:

- Pre-Construction Meeting
- Moisture Content of Pulverized Material
- Emulsion Content
- Depth Control
- Contour and Profile
- Moisture Content before Surfacing

This Summer and Next

- Two Projects in R4
 - SR 491: 8" FDR + HMA/SMA
 - SR 10: 12" FDR + HMA/SMA
- Four Projects in R2
 - SR 68, SR 171, SR 48, SR 71
 - All are 6" FDR + HMA/OGSC

Selecting Projects

(Still working out this one)

- Varying or multiple layers of HMA
- Low priority for Rehabilitation funding
- Minimal existing base
- Profile can be raised
- Distance from good materials sources
- Comparable to a remove and replace with 8" to 16" of new base course

Dangling Participles

- Solventless Emulsion perceived as Proprietary
- Need verification of strength and durability
 - BYU Research Project
- Concerns about permeability
- Need to get to Resilient Modulus Testing
- Varying Depths of application
- Contractor's business is based on a successful project

Summary

• FDR has a foothold in Utah

- Reduces cost
- Recycles materials
- Speeds up construction
- A few things to work on
 - Validation of design criteria
 - Get past some bad tastes
- Industry involvement was a key!!

Questions?